gzip is a software application used for file compression and decompression. The program was created by Jean-Loup Gailly and Mark Adler as a free software replacement for the compress program used in early Unix systems, and intended for use by the GNU Project (the "g" is from "GNU"). Version 0.1 was first publicly released on 31 October 1992, and version 1.0 followed in February 1993.
Contents
 [hide]
· 1 File format
· 2 Implementations
· 3 Derivatives and other uses
· 4 See also
· 5 Notes
· 6 References
· 7 External links
File format[edit]
	gzip

	Filename extension
	.gz

	Internet media type
	application/gzip[2]

	Uniform Type Identifier
	org.gnu.gnu-zip-archive

	Developed by
	Jean-Loup Gailly and Mark Adler

	Type of format
	data compression

	Open format?
	Yes

gzip is based on the DEFLATE algorithm, which is a combination of LZ77 and Huffman coding. DEFLATE was intended as a replacement for LZW and other patent-encumbered data compression algorithms which, at the time, limited the usability of compress and other popular archivers.
"gzip" is often also used to refer to the gzip file format, which is:
· a 10-byte header, containing a magic number (1f 8b), a version number and a timestamp
· optional extra headers, such as the original file name,
· a body, containing a DEFLATE-compressed payload
· an 8-byte footer, containing a CRC-32 checksum and the length of the original uncompressed data.
Although its file format also allows for multiple such streams to be concatenated (zipped files are simply decompressed concatenated as if they were originally one file[3]), gzip is normally used to compress just single files.[4] Compressed archives are typically created by assembling collections of files into a single tar archive, and then compressing that archive with gzip. The final .tar.gz or .tgz file is usually called a tarball.[5]
gzip is not to be confused with the ZIP archive format, which also uses DEFLATE. The ZIP format can hold collections of files without an external archiver, but is less compact than compressed tarballs holding the same data, because it compresses files individually and cannot take advantage of redundancy between files (solid compression).
Implementations[edit]
	NetBSD Gzip / FreeBSD Gzip

	Developer(s)
	The NetBSD Foundation

	Written in
	C

	Operating system
	Cross-platform

	Type
	data compression

	License
	Simplified BSD License

Various implementations of the program have been written. The most commonly known is the GNU Project's implementation using Lempel-Ziv coding (LZ77). OpenBSD's version of gzip is actually the compress program, to which support for the gzip format was added in OpenBSD 3.4. The 'g' in this specific version stands for gratis.[6] FreeBSD, DragonFlyBSD and NetBSD use a BSD-licensed implementation instead of the GNU version; it is actually a command-line interface for zlib intended to be compatible with the GNU implementation's options.[7] These implementations originally come from NetBSD, and supports decompression of bzip2 and the Unix pack(1) format.
Derivatives and other uses[edit]
When gzip is invoked as gunzip, it decompresses the data (a file or stdin). gunzip is equivalent to gzip -d.
When gzip is invoked as zcat, it also decompresses the data, but behaves similarly to cat. It decompresses individual files and concatenates them to standard output. zcat is equivalent to gzip -d -c.[8]
zlib is an abstraction of the DEFLATE algorithm in library form which includes support both for the gzip file format and a lightweight stream format in its API. The zlib stream format, DEFLATE, and the gzip file format were standardized respectively as RFC 1950, RFC 1951, and RFC 1952.
The "Content-Encoding"/"Accept-Encoding" and "Transfer-Encoding"/"TE" headers in HTTP/1.1 allow clients to optionally receive compressed HTTP responses and (less commonly) to send compressed requests. The specification for HTTP/1.1 (RFC 2616) specifies three compression methods: "gzip" (RFC 1952; the content wrapped in a gzip stream), "deflate" (RFC 1950; the content wrapped in a zlib-formatted stream), and "compress" (explained in RFC 2616 section 3.5 as "The encoding format produced by the common UNIX file compression program compress. This format is an adaptive Lempel-Ziv-Welch coding (LZW)."). Many client libraries, browsers, and server platforms (including Apache and Microsoft IIS) support gzip. Many agents also support deflate, although several important players incorrectly implement deflate support using the format specified by RFC 1951 instead of the correct format specified by RFC 1950 (which encapsulates RFC 1951). Notably, Internet Explorer versions 6, 7, and 8 report deflate support but do not actually accept RFC 1950 format, making actual use of deflate highly unusual. Many clients accept both RFC 1951 and RFC 1950-formatted data for the "deflate" compressed method, but a server has no way to detect whether a client will correctly handle RFC 1950 format.
Since the late 1990s, bzip2, a file compression utility based on a block-sorting algorithm, has gained some popularity as a gzip replacement. It produces considerably smaller files (especially for source code and other structured text), but at the cost of memory and processing time (up to a factor of 4)[citation needed]. bzip2-compressed tarballs are conventionally named either .tar.bz2 or simply .tbz.
AdvanceCOMP and 7-Zip can produce gzip-compatible files, using an internal DEFLATE implementation with better compression ratios than gzip itself—at the cost of more processor time compared to the reference implementation.
[bookmark: _GoBack]See also[edit]
What is gzip?
=============

Gzip reduces the size of the named files using Lempel-Ziv coding (LZ77)

How does it work?
=================

1. Compression algorithm (deflate)

The deflation algorithm used by gzip (also zip and zlib) is a variation of
LZ77 (Lempel-Ziv 1977, see reference below). It finds duplicated strings in
the input data. The second occurrence of a string is replaced by a
pointer to the previous string, in the form of a pair (distance,
length). Distances are limited to 32K bytes, and lengths are limited
to 258 bytes. When a string does not occur anywhere in the previous
32K bytes, it is emitted as a sequence of literal bytes. (In this
description, `string' must be taken as an arbitrary sequence of bytes,
and is not restricted to printable characters.)

Literals or match lengths are compressed with one Huffman tree, and
match distances are compressed with another tree. The trees are stored
in a compact form at the start of each block. The blocks can have any
size (except that the compressed data for one block must fit in
available memory). A block is terminated when deflate() determines that
it would be useful to start another block with fresh trees. (This is
somewhat similar to the behavior of LZW-based _compress_.)

Duplicated strings are found using a hash table. All input strings of
length 3 are inserted in the hash table. A hash index is computed for
the next 3 bytes. If the hash chain for this index is not empty, all
strings in the chain are compared with the current input string, and
the longest match is selected.

The hash chains are searched starting with the most recent strings, to
favor small distances and thus take advantage of the Huffman encoding.
The hash chains are singly linked. There are no deletions from the
hash chains, the algorithm simply discards matches that are too old.

To avoid a worst-case situation, very long hash chains are arbitrarily
truncated at a certain length, determined by a runtime option (level
parameter of deflateInit). So deflate() does not always find the longest
possible match but generally finds a match which is long enough.

deflate() also defers the selection of matches with a lazy evaluation
mechanism. After a match of length N has been found, deflate() searches for
a longer match at the next input byte. If a longer match is found, the
previous match is truncated to a length of one (thus producing a single
literal byte) and the process of lazy evaluation begins again. Otherwise,
the original match is kept, and the next match search is attempted only N
steps later.

The lazy match evaluation is also subject to a runtime parameter. If
the current match is long enough, deflate() reduces the search for a longer
match, thus speeding up the whole process. If compression ratio is more
important than speed, deflate() attempts a complete second search even if
the first match is already long enough.

The lazy match evaluation is not performed for the fastest compression
modes (level parameter 1 to 3). For these fast modes, new strings
are inserted in the hash table only when no match was found, or
when the match is not too long. This degrades the compression ratio
but saves time since there are both fewer insertions and fewer searches.

2. Decompression algorithm (inflate)

2.1 Introduction

The real question is, given a Huffman tree, how to decode fast. The most
important realization is that shorter codes are much more common than
longer codes, so pay attention to decoding the short codes fast, and let
the long codes take longer to decode.

inflate() sets up a first level table that covers some number of bits of
input less than the length of longest code. It gets that many bits from the
stream, and looks it up in the table. The table will tell if the next
code is that many bits or less and how many, and if it is, it will tell
the value, else it will point to the next level table for which inflate()
grabs more bits and tries to decode a longer code.

How many bits to make the first lookup is a tradeoff between the time it
takes to decode and the time it takes to build the table. If building the
table took no time (and if you had infinite memory), then there would only
be a first level table to cover all the way to the longest code. However,
building the table ends up taking a lot longer for more bits since short
codes are replicated many times in such a table. What inflate() does is
simply to make the number of bits in the first table a variable, and set it
for the maximum speed.

inflate() sends new trees relatively often, so it is possibly set for a
smaller first level table than an application that has only one tree for
all the data. For inflate, which has 286 possible codes for the
literal/length tree, the size of the first table is nine bits. Also the
distance trees have 30 possible values, and the size of the first table is
six bits. Note that for each of those cases, the table ended up one bit
longer than the ``average'' code length, i.e. the code length of an
approximately flat code which would be a little more than eight bits for
286 symbols and a little less than five bits for 30 symbols. It would be
interesting to see if optimizing the first level table for other
applications gave values within a bit or two of the flat code size.

2.2 More details on the inflate table lookup

Ok, you want to know what this cleverly obfuscated inflate tree actually
looks like. You are correct that it's not a Huffman tree. It is simply a
lookup table for the first, let's say, nine bits of a Huffman symbol. The
symbol could be as short as one bit or as long as 15 bits. If a particular
symbol is shorter than nine bits, then that symbol's translation is duplicated
in all those entries that start with that symbol's bits. For example, if the
symbol is four bits, then it's duplicated 32 times in a nine-bit table. If a
symbol is nine bits long, it appears in the table once.

If the symbol is longer than nine bits, then that entry in the table points
to another similar table for the remaining bits. Again, there are duplicated
entries as needed. The idea is that most of the time the symbol will be short
and there will only be one table look up. (That's whole idea behind data
compression in the first place.) For the less frequent long symbols, there
will be two lookups. If you had a compression method with really long
symbols, you could have as many levels of lookups as is efficient. For
inflate, two is enough.

So a table entry either points to another table (in which case nine bits in
the above example are gobbled), or it contains the translation for the symbol
and the number of bits to gobble. Then you start again with the next
ungobbled bit.

You may wonder: why not just have one lookup table for how ever many bits the
longest symbol is? The reason is that if you do that, you end up spending
more time filling in duplicate symbol entries than you do actually decoding.
At least for deflate's output that generates new trees every several 10's of
kbytes. You can imagine that filling in a 2^15 entry table for a 15-bit code
would take too long if you're only decoding several thousand symbols. At the
other extreme, you could make a new table for every bit in the code. In fact,
that's essentially a Huffman tree. But then you spend two much time
traversing the tree while decoding, even for short symbols.

So the number of bits for the first lookup table is a trade of the time to
fill out the table vs. the time spent looking at the second level and above of
the table.

Here is an example, scaled down:

The code being decoded, with 10 symbols, from 1 to 6 bits long:
